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Abstract

The KIVA family of codes was developed to simulate the thermal and fluid processes taking place inside an internal
combustion engine. In this latest version of this open source code, KIVA-4, the numerics have been generalized to
unstructrured meshes. This change required modifications to the Lagrangian phase of the computations, the pressure solu-
tion and fundamental changes in the fluxing schemes of the rezoning phase. This newest version of the code inherits all the
droplet phase capabilities and physical sub-models of previous versions. The integration of the gas phase equations with
moving solid boundaries continues to employ the successful arbitrary Lagrangian–Eulerian (ALE) methodology. Its new
unstructured capability facilitates grid construction in complicated geometries and affords a higher degree of flexibility.
The numerics of the code, emphasizing the new additions, are described. Various computational examples are performed
demonstrating the new capabilities of the code.
Published by Elsevier Inc.
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1. Introduction

The computation of the fluid mechanics in an internal combustion engine poses serious challenges to the
researcher from both the underlying physics, which include spray dynamics, chemical reactions, liquid
impingement, turbulence, etc. but also complicated moving geometries with potential topological changes.
It is this latter dynamic geometrical aspect which motivated code developers at Los Alamos National Labo-
ratory to implement an arbitrary Lagrangian–Eulerian (ALE) methodology into their simulation strategy [7]
when developing a series of computational fluid dynamics codes called KIVA. These codes integrated the
essential underlying physics models (spray, combustion, turbulence) and moving boundaries in a computa-
tional fluid dynamics code to simulate internal combustion engines. While KIVA was designed and applied
mainly in engines, its capabilities can and have been applied in other applications.
0021-9991/$ - see front matter Published by Elsevier Inc.
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Nomenclature

a pressure gradient scaling parameter
Ao switch (1 or 0) to turn turbulence on or off
Af cell face area vector
cv, cp specific heats at constant volume and pressure
D gas mass diffusion coefficient
Fspray spray momentum transfer term
g gravity
k turbulent kinetic energy per unit mass
p pressure
h specific enthalpy
I specific internal energy
K thermal conductivity
M mass of cell
Mv mass of control volume surrounding a vertex
Prt turbulent Prandtl number
_Qchem chemical source term
_Qspray spray source term
Ro universal gas constant
�R ¼ Ro

P
m

Y B
m

W m
gas constant

Sct turbulent Schmidt number
t time
T temperature
u velocity
~u turbulent gas velocity fluctuation
vp particle velocity
V volume
_W spray spray source term in turbulence equations

Wm molecular mass of species m

Ym mass fraction of species m

� turbulent dissipation rate
/D variable implicitness parameter
/p variable implicitness parameter for pressure
q density
qm density of species m
_qspray spray source term
_qchem

m chemical source term for species m

r viscous stress tensor
l coefficient of viscosity
k coefficient of viscosity
Dt time step

Subscripts

c cell
f face
m species
p particle
t turbulent
v vertex control volume
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Superscripts

A,B,C stage A, B or C
n time level n

D.J. Torres, M.F. Trujillo / Journal of Computational Physics 219 (2006) 943–975 945
The first version of KIVA was capable of computing transient compressible flow dynamics with fuel
sprays and combustion in relatively simple two- and three-dimensional geometries [5,4]. KIVA-II [3] made
much of the temporal differencing in KIVA implicit. While advection remained explicit with a subcycled
time step, advection was made more accurate with an improved upwinding scheme. A k–� turbulence
model was also incorporated. KIVA-3 [1] added the capability of using a block-structured mesh where
multiple blocks of cells could be patched together to construct a mesh. Software to generate block-struc-
tured meshes and post-processing visualization tools were included with the KIVA-3 package. The code
was enhanced by a procedure (snapping) used to remove or add layers of cells during piston movement.
KIVA-3V [2] added vertical or canted valves and a particle-based liquid wall film model. Due partly to its
open source distribution, KIVA-3V has been used extensively by universities and industry to perform
engine simulations and to serve as a platform for physics sub-model development [14,19–21]. Throughout
the versions of the KIVA code, the ALE method has continued to be used due to its attractive feature of
integrating efficiently fluid transport equations with moving solid boundaries. The strengths of this method
in handling dynamic boundaries are evidenced by its use in tracking free surface flows [6] or in handling
fluid–solid interactions [11,10].

In this paper, we discuss the latest version of the KIVA codes, KIVA-4 [15,16], which generalizes the com-
putational grid from structured to unstructured. This required modifications in the calculation of geometric
related quantities to compute diffusional terms and pressure in the Lagrangian stage of the calculations. In
addition, required modifications to the rezoning stage (cell and momentum fluxing) were implemented. These
constitute fundamental changes in the numerics of the code. Unstructured grids (compared to structured
grids) provide an easier route in the discretization of physical domains as complicated as internal combustion
engines. The unstructured grids can be composed of a variety of elements including hexahedra, prisms, pyr-
amids, and tetrahedra. In the development of KIVA-4, particular emphasis was placed on keeping KIVA-4
comparable in computational efficiency to KIVA-3V. KIVA-4 maintains the full generality of previous ver-
sions in particular in the use of the latest physics sub-models for multicomponent vaporization, wall impinge-
ment, Lagrangian liquid film movement, drop breakup, etc. The snapping procedure which accommodates
piston and valve motion is also implemented with some restrictions on an unstructured grid. The restricted
unstructured grid starts with an unstructured grid in a two-dimensional slice normal to the cylindrical axis.
Logically equivalent layers of this slice are stacked to fill up the cylindrical volume.

Many of the equations in the KIVA-II report [3] are repeated here for completeness. The exception are the
equations governing spray dynamics which required little modification. Section 2 describes the governing
equations, Sections 3–5 detail the numerical implementation of the equations making special emphasis on
the new implementations. A summary of the equations solved in a complete numerical cycle is provided in
Section 6. Various examples of numerical calculations and their comparisons to analytical results are included
in Section 7.
Table 1
Turbulence constants

Constants Standard KIVA RNG k–�

c�1
1.44 1.42

c�2
1.92 1.68

c�3
�1.0 Eq. (55)

Pr� 1.3 0.72
Prk 1.0 0.72
cl 0.09 0.085
cs 1.5 1.5
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Fig. 1. KIVA’s variable placement in a staggered mesh.
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Fig. 2. Indexing convention for a cell.
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KIVA-4 should be available for distribution through the Energy Science and Technology Software Center
in the fall of 2006.

2. Governing equations

KIVA-4 solves the following conservation equations presented in integral form:

� conservation of mass for species m
D

Dt

Z
V

qm dV ¼
Z

S
qDr qm

q

� �� �
dAþ

Z
V

_qchem
m dV þ

Z
V

_qspray
m dV ; ð1Þ
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Fig. 3. Pyramid (left) formed and tetrahedron (right) formed by degenerating cell nodes.
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� conservation of mass (this equation is automatically satisfied when all chemical species above are solved)
D

Dt

Z
V

q dV ¼
Z

V
_qspray dV ; ð2Þ
� conservation of momentum
D

Dt

Z
V

qu dV ¼ �
Z

S

1

a2
p þ Ao

2

3
qk

� �
dAþ

Z
S

r � dAþ
Z

V
Fspray dV þ

Z
V

qg dV ; ð3Þ
� conservation of energy
D

Dt

Z
V

qI dV ¼
Z

V
�pr � u dV þ

Z
V
ð1� AoÞr : ru dV þ

Z
S

KrT þ qD
X

m

hmr
qm

q

� �" #
dA

þ
Z

V
Aoq� dV þ

Z
V

_Qchem dV þ
Z

V

_Qspray dV ; ð4Þ

and the k–� turbulence equations

D

Dt

Z
V

qk dV ¼ �
Z

V

2

3
qkr � u dV þ

Z
V

r : ru dV þ
Z

S

l
Prk

� �
rk

� �
dA�

Z
V

q� dV þ
Z

V

_W spray dV ; ð5Þ

D

Dt

Z
V

q� dV ¼ �
Z

V

2

3
c�1 � c�3

� �
q�r � u dV þ

Z
S

l
Pr�

� �
r�

� �
� dA

þ
Z

V

�

k
c�1r : ru� c�2q�þ cs

_W spray
� �

dV ; ð6Þ

where Prk, Pr�, c�1 , c�2 , c�3
and cs are turbulence constants defined in Table 1. KIVA-4 also provides for an

RNG (ReNormalization Group) model for turbulence which is described in Section 4.6. In Eq. (3), a is the
pressure gradient scaling (PGS) parameter which is normally set to 1.

The droplet phase employs a stochastic method for Lagrangian particle dynamics [3]. The full treatment of
this phase including physical sub-models accounting for wall impingement, vaporization, collisions, and aero-
dynamic breakup is directly inherited from the previous versions of the code [2,17].
3. KIVA’s ALE scheme

KIVA-4 uses an ALE method. The conservation equations are solved in three stages. In stage A, the influ-
ence of the spray, wall film particles and chemical reactions on gas quantities is computed. Stage B solves the
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governing equations in Lagrangian form using a finite volume scheme. The Lagrangian description automat-
ically accounts for the advective terms without having to explicitly discretize them. Stage C is the Eulerian or
rezoning stage, in which the grid is moved to new locations. The new locations of the grid are usually chosen to
preserve grid quality but they also can be chosen to effect local grid refinement in regions of interest. Fluxes of
mass, momentum, energy and turbulence quantities are exchanged during this rezoning stage.

KIVA-4 staggers its variables. All variables except velocity are located at cell-centers. Velocity is located at
the vertices of the cell. See Fig. 1. Let Ni denote the indices of the nodes forming cell i. KIVA-4 (like KIVA-
3V) uses the cell indexing convention shown in Fig. 2 (only the subscripts of Ni are shown in Fig. 2).

However in KIVA-4 (unlike KIVA-3V) nodes indices can be equal. For example, if N5 = N6 = N7 = N8, the
top face of the cell degenerates into a point, forming a pyramid. If N5 = N6 = N7 = N8, and N1 = N2, a tet-
rahedron is formed. See Fig. 3. We refer to cells which have collapsed edges (or equal node indices) as degen-
erate cells or elements.

4. Numerical schemes

In this section, the solution of the governing equations (1)–(6) in stage A and stage B is presented. Specif-
ically the algorithm for updating density, velocity, temperature and pressure is described. A finite volume
scheme requires one to define a control volume with which to compute volume and surface integrals. In updat-
ing density, temperature and pressure, which are cell-centered quantities, the control volume coincides with
the cell volume. In updating the velocity field, which is defined at all vertices, the control volume consists
of portions of computational cells that share a given vertex (see Section 4.2). A detailed description follows
for the solution of each respective field.

4.1. Density

The stage A density of species includes contributions from chemistry and spray evaporation and is solved at
constant volume:
qA
m � qn

m

Dt
¼ _qchem

m þ _qspray
m : ð7Þ
Eq. (7) assumes that all evaporated mass from fuel droplets in a cell is distributed uniformly within that cell
(which incidentally causes the spray evolution to be dependent on grid resolution). Once the stage A species
densities have been calculated, stage A density and mass fractions are calculated
qA ¼
X

m

qA
m and Y A

m ¼
qA

m

qA
: ð8Þ
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Fig. 4. Edge conventions in calculating geometric coefficients.
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Fig. 5. Portion of the momentum control volume for a hexahedra (left) and a tetrahedron (right).
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The Lagrangian stage B species densities are then computed using the finite volume approximation to (1) de-
rived in Appendix A,
MB Y B
m � Y A

m

Dt
¼
X

f

ðqDÞnfr½/DY B
m þ ð1� /DÞY A

m �f � A
n
f : ð9Þ
(Note that stage A already incorporates chemical and spray sources.) In (9), Af is a vector which points in the
direction of the outward facing cell face normal and whose magnitude is equal to the area of the face. Eq. (9) is
approximated using a turbulent Schmidt number Sct ¼ lt

qD,
MB Y B
m � Y A

m

� 	
� Dt

Sct

X
f

ðln
t ÞfðrY A

mÞf � A
n
f þ

X
f

ðln
t Þfr½/DðY B

m � Y A
mÞ�f � A

n
f

" #
¼ 0: ð10Þ
Eq. (10) is solved in every computational cell. The viscosity lt is computed using
lt ¼ lair þ Aoclq
k2

�
; ð11Þ
where lair is the laminar air viscosity computed using A1T
3
2=ðT þ A2Þ, Aoclqk2

�
is the turbulent contribution, A1,

A2 and cl are constants, normally set to 1:457� 10�5 g

cm s
ffiffiffi
K
p , 110 K, and 0.09, respectively. Face viscosities are

computed by averaging the cell viscosities adjoining the cell.
The terms
X

f

ðln
t ÞfðrY A

mÞf � A
n
f and

X
f

ðln
t Þfr½/DðY B

m � Y A
mÞ�f � A

n
f

or any term of the form
P

f ðrQÞf � Af is computed by first calculating geometric coefficients ac, ae12
and ae34

using
acðxcn � xcÞ þ ae12
ðx1 � x2Þ þ ae34

ðx3 � x4Þ ¼ Af ; ð12Þ

where xc is the cell-center, xcn is the cell-center of the neighboring cell across the face, x1 and x2 are the centers
of opposite edges 1 and 2, and x3 and x4 are the centers of opposite edges 3 and 4. See Fig. 4.

In unstructured meshes, the face can be a quadrilateral or a triangle (which necessitates a modified
treatment of (12)). If one edge is degenerate, say x4, we set x4 to be the face center. If more than one edge
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is degenerate, the entire face area is zero. Solving (12) amounts to solving a 3 · 3 linear system of equations
which is accomplished using Cramer’s rule. Then ($Q)f Æ Af is computed using
acðQcn
� QcÞ þ ae12

ðQ1 � Q2Þ þ ae34
ðQ3 � Q4Þ ¼ ðrQÞf � Af ; ð13Þ
where Qc is the cell-centered value of Q, Qcn
is the cell-centered value of the neighboring cell across the face,

and Qi are the values of Q on the face edges. The Qi are calculated by averaging all cells that share the edge. If
x4 is degenerate, we set Q4 ¼ 1

2
ðQc þ Qcn

Þ to be the face value of Q. One should note that in solving (10), there is
no net gain of mass, i.e. MB = MA.
4.2. Momentum

Solution of the momentum equation determines the velocity field, which in our present code is defined at
the vertices. In performing this calculation, the control volume employed (denoted here as the vertex control
volume Vv) is composed of portions of the many cells that share this vertex. See Fig. 5. Specifically, the vertex
control volume Vv and mass Mv are determined by adding cell volume Vc and mass contributions Mc from
each cell sharing the vertex according to
V v ¼
X

c

vcV c and Mv ¼
X

c

vcM c;
where vc is the reciprocal of the distinct number of vertices a cell owns. For example vc ¼ 1
8

for a hexahedron
and vc ¼ 1

4
for a tetrahedron. In previous versions of KIVA, vc was always set to 1

8
.

The Lagrangian discretized version of the momentum equation (3) between stage B and n is given by
MB
v uB �Mn

vun

Dt
¼ �

X
c

X
bc

1

ðanÞ2
/ppp þ ð1� /pÞpn
� 	

þ A0
2

3
qAkA

" #
c

An
bc
þ
X

c

X
bc

½/DrðuBÞ

þ ð1� /DÞrðuAÞ�c � A
n
bc
�
X

v

Np

4

3
pqp ðrB

p Þ
3
vB

p � ðr0pÞ
3
v0p

h i
þMn

vg;
where the sum over bc is over all momentum facets corresponding to a given cell c. For instance, these momen-
tum facets in one cell are illustrated by their normal vectors A1, A2, and A3 in Fig. 5. The sum over c is over all
the cells which share the common vertex v. For an interior vertex in a structured hexahedral grid there will be
24 such momentum facets since in a structured hexahedral grid eight cells share a vertex. The terms /p and /D

are the variable implicitness parameters which allow one to specify the degree of implicitness for a discretiza-
tion. The momentum transfer due to spray

R
V Fspray dV is represented by the term
�
X

v

N p

4

3
pqp ðrB

p Þ
3
vB

p � ðr0pÞ
3
v0p

h i
: ð14Þ
The quantities r0p and v0p denote the particle radius and velocity after droplet aerodynamic breakups, collisions,
and gravitational acceleration. The terms rB

p and Np represent the droplet radius after evaporation and the
number of droplets in a parcel. The particle velocity at stage B, vB

p , is computed with the nearest updated
gas velocity uB and its turbulent fluctuating component ~u,
vB
p � v0p

Dt
¼ DpðuB þ ~u� vB

p Þ; ð15Þ
where Dp is the drag function [3]. This implicit calculation of the particle equation circumvents time step lim-
itations due to the strong coupling of gas and droplet velocities. The term Dp is computed using
Dp ¼
3

8

qn

qB
p

jun þ ~u� vpj
r0p

C�D ð16Þ
where the drag coefficient C�D is defined by C�D ¼ CDð1þ 2:632ypÞ, CD is defined by
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CD ¼
24

Rep
1þ 1=6Re

2
3
p

� �
; Rep < 1000;

0:424; Rep > 1000;

(
Rep ¼

2qnr0pjun þ ~u� vpj
lairðT̂ Þ

ð17Þ
and T̂ ¼ T p þ 1
3
ðT n � T pÞ. The term yp is used to represent the droplet deviation from sphericity. Solving for vB

p

in (15) and substituting this into Eq. (14) gives
ðMB
v þ SvÞuB �Mn

vun

Dt
¼ �

X
c

X
bc

1

ðanÞ2
/ppp þ ð1� /pÞpn
� 	

þ A0

2

3
qAkA

" #
c

An
bc

þ
X

c

X
bc

½/DrðuBÞ þ ð1� /DÞrðuAÞ�c � A
n
bc
� Rv

Dt
þMn

vg;
where
Sv ¼ Dt
X

v

N p

4

3
pqpðrB

p Þ
3 DtDp

ð1þ DtDpÞ

 !
and

Rv ¼ Dt
X

v

N p
4

3
pqp ðrB

p Þ
3 v0p þ DtDp~u

1þ DtDp

� �
� ðr0pÞ

3
v0p

� �
: ð18Þ
The sums in Sv and Rv are sums over all particles defined to be within the vertex control volume. The calcu-
lation of (18) is broken up into two steps from the n to the A stage and from the A to the B stage. The stage A
vertex velocities incorporate gravity and an implicit coupling to the spray particles,
ðMA
v þ SvÞuA �Mn

vun

Dt
¼ �Rv

Dt
þ gMn

v: ð19Þ
The second step is given by
ðMB
v þ SvÞ

uB � uA

Dt
¼ �

X
c

X
bc

1

ðanÞ2
ð/ppp þ ð1� /pÞpnÞ þ A0

2

3
qAkA

" #
c

An
bc

þ
X

c

X
bc

½/DrðuBÞ þ ð1� /DÞrðuAÞ�c � A
n
bc
: ð20Þ
To initiate the iteration that will govern the velocity, pressure, and temperature calculations (discussed in
Section 4.5), the initial value for pressure above, pp, is assigned the following extrapolated value from previous
time steps
pp ¼ pn�1 þ Dtn

Dtn�1
½pn�1 � pn�2�: ð21Þ
The extrapolated pressure is improved by using the stage B pressure computed in Section 4.4 in subsequent
iterations within a cycle. This extrapolated pressure is a reasonable first approximation since in engine calcu-
lations the pressure experiences a large temporal variation relative to its spatial variation.

The values for Abi
are not explicitly evaluated. Instead a property of closed surfaces is used. The surface

integral over a closed surface is zero
Z
dA ¼ 0! A1 þ A2 þ A3 þ A10 þ A20 þ A30 ¼ 0; ð22Þ
where Ai0 denotes the partial faces that coincide with the actual cell faces. See Fig. 5. This notation allows one
to write for one cell sharing a vertex
X

bc

ncAbc
¼ nc A1 þ A2 þ A3½ � ¼ �nc A10 þ A20 þ A30½ � � �

X
b0c

ncAb0c
; ð23Þ
where nc is any cell-centered quantity. Furthermore, since Ab0c
are actually portions of the actual cell faces Afc ,

one can write
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X
bc

ncAbc
¼ �

X
b0c

ncAb0c
¼ �nc

X
f

vfc
Afc ; ð24Þ
where vfc
is set equal to one-quarter of the area of the normal cell face for a quadrilateral face and one-third of

the area of the normal cell face for a triangular face. Previous versions of KIVA always set vfc
to 1

4
. Using (24),

(20) can be rewrittten in the form with which it is solved
ðMB
v þ SvÞ

uB � uA

Dt
�
X

c

1

ðanÞ2
/ppp þ ð1� /pÞpn
� 	

þ A0

2

3
qAkA

" #
c

X
f

vfc
An

fc

þ
X

c

½/DrðuBÞ þ ð1� /DÞrðuAÞ�c �
X

f

vfc
An

fc
¼ 0; ð25Þ
where
P

f vfc
An

fc
again denotes a sum over the three area face vectors of a cell that share a vertex. The viscous

stress tensor itself is Newtonian, i.e.
r ¼ ln
t ðruÞ þ ðruÞT
h i

þ knr � uI; ð26Þ
where kn is normally set to �2
3
ln

t . Gradients of velocity within a cell are evaluated using
ðruÞc 	
1

V c

Z
V c

ru dV ¼ 1

V c

Z
S

u dA ¼ 1

V c

X
f

uf A
n
f : ð27Þ
The PGS (pressure gradient scaling) parameter, a, can be used to reduce sound speeds c by a factor of 1/a, thus
effectively lowering the sound speed Courant number, cDt

Dx . The PGS method should not be used in problems where
one wants to accurately track acoustic waves. However, in many applications where acoustic waves do not affect
properties of interest, the PGS method can be used to improve the computational efficiency of the code.
4.3. Energy

The first step in the energy calculation occurs from the n-time level to the A stage through a constant vol-
ume process where only the spray and chemical reaction sources are considered,
MAIA �MnIn

Dt
¼ V nð _Qchem þ _QsprayÞ: ð28Þ
Then the internal energy is updated to an intermediate t-state accounting for turbulence dissipation and en-
thalpy diffusion
MB I t � IA

Dt
¼ A0MB�A þ

X
f

ðqDÞnf
X

m

hmðT n
f Þr /DY B

m þ ð1� /DÞY A
m

� �
f

( )
� An

f

	 A0MB�A þ 1

Sct

X
m

X
f

ðln
t ÞfhmðT n

f Þr /DY B
m þ ð1� /DÞY A

m

� �
f
� An

f

( )
: ð29Þ
The temperature T t is solved implicitly from
I t ¼
X

m

Y B
mImðT tÞ; ð30Þ
and the specific heat, ct
v ¼ oI=oT jV , is then computed from the tabulated values of internal energy in the

KIVA-4 fuel libraries. The Lagrangian step from the t-state to the B stage includes the viscous dissipation
terms and diffusion terms,
MB IB � I t

Dt
	 �p

X
f

uf � Af þ ð1� AoÞ /DrBðuBÞ : ruB þ ð1� /DÞrAðuAÞ : ruA
� �

V n

þ
X

f

Kn
fr /DT B þ ð1� /DÞ~T
� �

f
� An

f ; ð31Þ
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where ~T is given by
~T ¼ T n þ 1

cn
p

I t � In þ pn 1

qA
� 1

qn

� �� �
; ð32Þ
and
�p
X

f

uf � Af 	 �
pp þ pn

2

� �
V B � V n

Dt

� �
: ð33Þ
~T is an approximation to Tt derived by assuming that heat addition occurs at constant pressure. To simplify
(31), we have
IB � I t � ct
vðT B � T tÞ
and the equation of state for an ideal gas,
V B ¼ MB

pp
�RT B: ð34Þ
Here �R ¼ Ro
P

m
Y B

m
W m

. It should be noted that the ideal gas approximation is an good assumption under most
conditions [18]. Substituting these expressions into (31) and solving for temperature at stage B yields
T B ¼ T t þ pp þ pn

2ct
v

V n

MB
þ Dt

MBct
v

1

Prt

X
f

ðcpltÞfrð/DT B þ ð1� /DÞ~T Þf � A
n
f

"(

þð1� AoÞð/DrðuBÞ : ruB þ ð1� /DÞrðuAÞ : ruAÞV B

#),
1þ pp þ pn

2ct
vpp

�R
 �

: ð35Þ
The turbulent Prandtl number is defined as Prt � cplt

K t
.

4.4. Pressure

The pressure pB is chosen so that the volume VB from the ideal equation of state and the Lagrangian vol-
ume VLAG computed from the movement of the cell faces agree. The ideal equation of state (34), rewritten in
terms of the pressure pB, is
V B ¼ MB

pB
�RT B: ð36Þ
The Lagrangian volume is
V LAG ¼ V n þ Dt
X

f

ðu � AÞBf : ð37Þ
The contribution from pressure pB in (37) can be made evident by deriving an expression for ðu � AÞBf .
Consider a thin slice with volume Vf centered around face f. Taking the Lagrangian derivative of the inner

product of the momentum of this volume with its normal vector gives
D

Dt

Z
V f

qu � Af dV ¼ D

Dt
Af �

Z
V f

qu dV
� �

¼ DAf

Dt
�
Z

V f

qu dV þ Af �
D

Dt

Z
V f

qu dV : ð38Þ
In the numerical approximation of this relation, it is computationally desirable to start at some intermediate
time level, t, and progress to the end of the Lagrangian time step, stage B. Explicitly, this numerical approx-
imation is
MB
f

ðu � AÞBf � ðu � AÞ
t
f

Dt
¼ MB

f

dAf

dt
� un

f þ Af �
½ð
R

V f
qu dV ÞB � ð

R
V f

qu dV Þt�
Dt

: ð39Þ
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The time level t is defined as
MB
v þ Sv

� 	 ut � uA

Dt
¼ �

X
c

½/DrðuBÞ þ ð1� /DÞrðuAÞ�c �
X

f

vfc
An

fc
: ð40Þ
One should note that MB
f ¼ M t

f . Since stage A has already accounted for the spray sources and gravity, the
difference in momentum between stage t and B should only include gradients of pressure and turbulent kinetic
energy. Therefore, Eq. (39) becomes
MB
f

ðu � AÞBf � ðu � AÞ
t
f

Dt
¼ MB

f

dAf

dt
� un

f þ Af � �
Z

V f

r 1

a2
p þ Ao

2

3
qk

� �� �
dV

	 MB
f

dAf

dt
� un

f � V fr
/p

ðanÞ2
pB þ

ð1� /pÞ
ðanÞ2

pn þ 2

3
Aoq

AkA

" #
f

� An
f : ð41Þ
The quantity ðu � AÞtf is approximated using
ðu � AÞtf 	 ut
f � A

n
f ; ð42Þ
where ut
f is an average of the nodal velocities ut forming the cell face. Solving for ðu � AÞBf in (41) and substi-

tuting into (37) yields
V LAG ¼ V n þ Dt
X

f

ðu � AÞtf þ Dt
dAf

dt
� un

f �
Dt
qB

f

r
/p

ðanÞ2
pB þ

1� /p

ðanÞ2
pn þ 2

3
Aoq

AkA

� �" #
f

� An
f

" #
; ð43Þ
where qB
f is the average of the cell densities bordering the cell face. Geometric coefficients are used to evaluate

r½ /p

ðanÞ2p
B þ 1�/p

ðanÞ2 pn þ ð2
3
AoqAkAÞ�f � A

n
f in contrast to earlier versions of KIVA which use a surface integral formu-

lation over pressure and turbulent kinetic energy in (41), integrating over the faces of the control volume sur-
rounding the face f. The calculation of dAf/dt is discussed in Appendix B.

One must now find a pB so that VB and VLAG, computed with (36) and (43), agree. However, the presence of
pressure pB in the denominator of VB (36) and in the expression for TB (when pB is substituted for pp) in (35)
makes the system of equations VB = VLAG nonlinear. These problems are remedied by computing VB using a
first order Taylor series
V BðpB; T BðpBÞÞ 	 V Bðpp; T BðppÞÞ þ dV B

dpp
ðpB � ppÞ � V B

c : ð44Þ
Using the equation of state (34) and (35), one can derive an expression for the term dV B

dpp ,� �

oV B

opp
¼ � 1

ct

V B

pp
¼ �

2ct
v þ �R 1� V n

V B

2ct
v þ

pnþpp

pp
�R

V B

pp

� �
; ð45Þ
where VB is evaluated at pp in (45). See Appendix C for details.
Defining V B

c to be the right-hand side of (44), the equation of state volume approximation at pB gives the
following relation
V B
c ¼ V B � 1

ct

V B

pp
ðpB � ppÞ: ð46Þ
A pressure pB is sought so that V B
c and VLAG
jV B
c � V LAGj < tol ð47Þ
agree to some tolerance.

4.5. SIMPLE method

The semi-implicit pressure linked equations or SIMPLE method is an iteration over the coupled equations
solved in Sections 4.2, 4.3, and 4.4. Eq. (25) is solved for velocity uB, (35) is solved for temperature TB and (47)



D.J. Torres, M.F. Trujillo / Journal of Computational Physics 219 (2006) 943–975 955
is solved for pressure pB. These equations are solved again in successive SIMPLE iterations. Essentially the
form of (25), (35) and (47) remains the same except that pB is substituted for pp in (25) and (35). The SIMPLE
iteration proceeds if (47) is not satisfied after some number of iterations or if
max
c

jpB
c � pp

c j
pdif

> tolp ð48Þ
where pdif ¼ maxfmaxcfpcg �mincfpcg; po
difg and po

dif is a user-defined constant. Here maxc{pc} and minc{pc}
refer to the maximum and minimum pressures over the mesh, respectively. Once (47) and (48) have been sat-
isfied, (25) is updated with the latest pressure pB, V B � V B

c , the densities are updated qB
m ¼ qA

m
V n

V B (note that
Vn = VA), and IB is computed using VB, pB and TB in (31).

4.6. Turbulence

The turbulence equations are solved after the phase B kinematic quantities have been computed. The tur-
bulent kinetic energy is first updated with the spray contributions,
MBkA �Mnkn

Dt
¼ _W sprayV n: ð49Þ
The diffusion terms in the k equation are solved using
MBkB �MBkA

Dt
¼ � 2

3
qB V B � V n

Dt
½ð1� f Þkn þ fkB� þ V n /DrðuBÞ : ruB þ ð1� /DÞrðuAÞ : ruA

� �
þ
X

f

ðln
t Þf

Prk
r /DkB þ ð1� /DÞkA
� �

f
� An

f �MB �
n

kn kB; ð50Þ
where
f ¼ 1; V B � V n > 0;

0; V B � V n
6 0:

(
ð51Þ
Similarly, the turbulence dissipation rate is first updated with the spray contributions,
MB�A �Mn�n

Dt
¼ cs

_W sprayV n �
A

kn : ð52Þ
The diffusion terms in the � equations are solved using
MB�B �MB�A

Dt
¼ � 2

3
c�1 � c�3

� �
qB V B � V n

Dt
ð1� f Þ�n þ f �B
� �

þ c�1
�n

kn V n /DrðuBÞ : ruB
�

þð1� /DÞrðuAÞ : ruA
�
þ
X

f

ðln
t Þf

Pr�
r /D�

B þ ð1� /DÞ�A
� �

f
� An

f � c�2
MB �

n

kn �
B: ð53Þ
In the RNG (ReNormalization Group) k–� equations, the term c�1
�n

knV n½/DrðuBÞ : ruB þ ð1� /DÞrðuAÞ :
ruA� in (53) is replaced by
c�1
� ~sð Þ �

n

kn V n /DrðuBÞ : ruB þ ð1� /DÞrðuAÞ : ruA
� �

; ð54Þ
where
~s ¼ s
1� s

4:38

� 	
1þ :012s3ð Þ ; s ¼ kn

�n
1

and
1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ln
t

/DrB : ruB þ ð1� /DÞrA : ruAð Þ þ 2

3
r � uBð Þ2

s
:



956 D.J. Torres, M.F. Trujillo / Journal of Computational Physics 219 (2006) 943–975
In addition c�3
is replaced by
:41333þ 0:06899s~s� ŝ; r � uB P 0;

:41333� :06899s~s� ŝ; r � uB < 0;


ð55Þ
where ŝ ¼ 2
3
cl~sr � uBkn

�n
. The RNG equivalent of the constants cl, Prk, c�1 , c�2

and Pr� in (11), (50), (53) and (54)
assume different values than in the standard k–� model. See Table 1.

Since one cannot resolve the gradients in velocity and temperature near the wall at large Reynolds numbers
due to resolution requirements, wall functions are used to set velocities and modify the cell internal energy for
cells adjacent to a wall.

4.7. Conjugate residual method

The coupled system of equations described in Section 4.5 is solved with the SIMPLE algorithm. Individu-
ally the Lagrangian equations for stage B quantities, namely species density (10), velocity (25), temperature
(35), pressure (47), turbulent kinetic energy (50) and turbulent dissipation rate (53) are solved using the con-
jugate residual method [12]. We briefly describe the method with the linear system Bx = b where B denotes a
matrix.

The solution to the linear system Bx = b is obtained by performing the following steps.

1. Calculate the current residual rj = b � Bxj.
2. Calculate sj = Prj, where P is a preconditioning matrix taken to be the Jacobi preconditioning matrix in

KIVA
pij ¼
1=bij if i ¼ j;

0 if i 6¼ j:



Here pij and bij denote the entries of the matrices P and B. Initialize q0 = s1.

3. Orthogonalize sj with respect to qj�1,
qj ¼ sj � jjqj�1 where jj ¼
ðPBsj � Bqj�1Þ
ðPBqj�1 � Bqj�1Þ

:

4. Find the component dx of x � x in the direction of q ,
j+1 j j
dxjþ1 ¼ ajqj; aj ¼
ðPrj � BqjÞ
ðPBqj � BqjÞ

:

5. Calculate xj+1 = xj + dxj+1 and return to step 1. The iteration is stopped when jdxjji < �tol(max{x0} �

min{x0}) for each component i of the vector dxj where �tol is some user defined tolerance.
5. Fluxing schemes

After stage B, the vertices have moved following a Lagrangian trajectory as evidenced by the governing
equations (1)–(6). In stage C, vertices are moved from their stage B locations to their locations at the next
global time step, n + 1. This entails the calculation of all fluxes relevant to this translation. In calculations
consisting of stationary domains the location for all vertices will be the same at the beginning of each time
step, and the rezoning step C will simply consist of flux calculations corresponding to the reverse of the
Lagrangian B translation. For dynamic calculations, e.g. internal combustion engines, the evolution of all
vertices is controlled by the user through a prescribed algorithm aimed at maintaining grid quality at the
very least.

When vertices move, cell faces move, and fluxes of mass, internal energy and turbulence quantities need to
be computed between cells. The faces of the momentum control volume surrounding a vertex also change and
vertices will need to exchange momenta.
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5.1. Cell fluxing

There are two types of advection schemes provided in KIVA-3V: partial donor cell differencing (PDC) and
quasi-second-order upwind (QSOU) differencing. These are also used in KIVA-4.

Fig. 6 shows a cell whose right face is shown at the Lagrangian vertex locations xB and at the new time level
n + 1 locations, xn+1. The other faces of the cell will also be displaced. However, only the displacement of the
right face is shown here for simplicity. Define the volume dVf to be equal to the volume between the area of
face Af(x

B) and the area of face Af(x
n+1). By KIVA’s convention, if the cell volume increases when moving

from the xB Lagrangian locations to the xn+1 locations, the volume dVf > 0 is considered positive with respect
to that cell. The volume change can be computed directly from the Lagrangian vertices xB and the new loca-
tions xn+1. The volume change can also be computed by observing that
dV ½AfðxnÞ ! Afðxnþ1Þ� ¼ dV ½AfðxnÞ ! AfðxBÞ� þ dV f ; ð56Þ

where dV[Af(x

n)! Af(x
n+1)] is the volume swept by the face moving from the time level n locations to the time

level n + 1 locations and dV[Af(x
n)! Af(x

B)] is the volume swept by the face moving from the time level n
locations to the Lagrangian locations. Substituting dV ½AfðxnÞ ! AfðxBÞ� ¼ ðu � AÞBf Dt yields
dV f ¼ dV ½AfðxnÞ ! Afðxnþ1Þ� � ðu � AÞBf Dt; ð57Þ

which is the equation KIVA-4 uses to compute dVf. The term ðu � AÞBf is computed in Section 4.4 and saved for
use in (57). In Fig. 6, the cell will gain mass qdVf > 0. Similarly, the cell will gain quantities, qqdVf > 0, where q

is specific internal energy, turbulent kinetic energy k or turbulent length scale L ¼ k
3
2

�
. The turbulent length scale

is fluxed rather than � because � generally has steeper gradients.
Let us now discuss cell fluxing exclusively with quantities qqdVf since the fluxing of qmdVf is a special case

where q = Ym. A key quantity in the flux calculation is the determination of the term (qq)f, the value of qq at
the face. PDC and QSOU differ in how (qq)f is approximated. Let (qq)c and xc refer to the cell-centered quan-
tity (qq) and the cell-center respectively for which dVf is positive. (In the case dVf < 0, one must merely locate
the cell opposite the face for which dVf > 0 and compute the fluxes from this opposite cell’s perspective.) In
addition, let ðqqÞcn

and xcn refer to the cell-centered quantity and the cell-center of the neighboring cell across
face f. See Fig. 7.

For PDC differencing
ðqqÞBf ¼
1

2
ðqqÞBcn

ð1þ a0 þ b0CÞ þ 1

2
ðqqÞBc ð1� a0 � b0CÞ; ð58Þ
x

Face f

Face

n+1

Vfδ

(xB)

xB

f(xn+1)

Fig. 6. Cell control volume change.
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Fig. 7. Neighboring cells for gradient calculation.
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where
C ¼ 2jdV f j
V c þ V cn

and 0 6 a0 þ b0C 6 1: ð59Þ
When a0 = 1 and b0 = 0, the method defaults to full upwind differencing.
For QSOU differencing a gradient is first computed for the face,
dðqqÞ
df

¼ signððqqÞBc � ðqqÞBcn
Þmin

jðqqÞBc � ðqqÞBcn
j

jxnþ1
c � xnþ1

cn
j ;
jðqqÞBcn

� ðqqÞBcnn
j

jxnþ1
cn
� xnþ1

cnn
j

 !
: ð60Þ
If ðqqÞBc � ðqqÞBcn
and ðqqÞBcn

� ðqqÞBcnn
differ in sign, dðqqÞ

df is set to zero. The quantities ðqqÞBcnn
and xcnn refer to the

cell-centered quantities across face fo. See Fig. 7. The face fo is the face opposite face f in the cell whose cell
center is xcn . The cell xnþ1

cnn
is computed by finding the cell whose angle with xn

f � xn
cn

is largest,
xnþ1
cnn
¼ min

xn
cj

xn
f � xn

cn

jxn
f � xn

cn
j �

xn
cj
� xn

cn

jxn
cj
� xn

cn
j

 !
; ð61Þ
where xn
f is the face center of the face between cells whose cell centers are xc and xcn . For hexahedral grids, the

opposite face fo can be approximated by using the hexahedral geometry (i.e. the opposite face of a right face is
a left face, the opposite face of a bottom face is a top face). Appendix D describes how to improve the calcu-
lation of dðqqÞ

df . For QSOU differencing, the face value of qq is computed using
ðqqÞBf ¼ ðqqÞBcn
þ dðqqÞ

df
jxnþ1

f � xnþ1
cn
j 1� jdV f j

V B
cn

 !
;

where xnþ1
f is the center of the face evaluated at time n + 1. For both PDC and QSOU differencing, (qq)fdVf is

exchanged between cells
ðqqV Þnþ1
c ¼ ðqqV ÞBc þ ðqqÞBf dV f ;

ðqqV Þnþ1
cn
¼ ðqqV ÞBcn

� ðqqÞBf dV f :
ð62Þ
Eq. (62) is solved for every non-solid face in the mesh.
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5.2. Momentum fluxing

The momentum fluxing calculation must calculate fluxes of momentum through each facet of the vertex
control volume surrounding a vertex. For illustration purposes a portion of the vertex control volume
described here is shown in Fig. 5. Conservation of momentum is accomplished by exchanging momentum
gained and lost through these facets with neighboring vertices. The algorithm used here for momentum fluxing
in unstructured grids is based on facets of the vertex control volume surrounding an edge. It departs signif-
icantly from the structured algorithm used in previous versions of KIVA. An edge referenced in this section
is defined as the line joining two vertices, for instances nodes 1 and 2 in either Fig. 8 or Fig. 9. The momentum
facet corresponding to an edge in an element or cell is the quadrilateral area defined by the following four
points: the average of the two node locations on the edge, the centers of the two abutting faces to the edge,
and the center of the element. See the left side of Fig. 8. The mass change of the momentum facet dM ec is com-
puted by determining the mass between the momentum facet when the vertices are located at the Lagrangian
locations and the momentum facet computed when the vertices are located at the time n + 1 locations. See the
right side of Fig. 8. The mass change dM ec is taken to be positive with respect to a vertex if the vertex control
volume gains mass as the facet moves from the Lagrangian to the time n + 1 locations (or in other words, the
net movement of the momentum facet from the Lagrangian to the time n + 1 locations is away from the
Mec
δ

Node 1

Node 2

Center of abutting face

Center of element

Average of
node 1 and 2 locations

Edge

Facet

Node 1

Node 2

Momentum facet based

Momentum facet based on
time x n+1 locations

on

Mec
δ

Lagrangian xB locations

Fig. 8. Change in momentum control volume face in a cell for an edge.
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Fig. 9. Change in momentum control volume face in a cell for an edge.
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vertex). For example, dM ec > 0 for node 1 in Fig. 8. The volume of dM ec is always a hexahedral volume. The
total mass displacement, dMe, for the momentum facets corresponding to an edge are computed for each
non-degenerate edge using
dM e ¼
X

c

dM ec ð63Þ
and the mass of the edge, Me, is computed using
M e ¼
X

c

1

fec

M c; ð64Þ
where the sum
P

c is a sum over all cells sharing the edge. The factor fec is computed by first realizing that the
edge in question is one of the multiple edges connecting two non-adjacent faces (e.g. f1 and f2 in Fig. 9) of a
cell. One of the faces may be degenerate. The factor fec is the total number of edges connecting the two faces.
For hexahedral meshes fec ¼ 4 and for tetrahedral meshes fec ¼ 3.

For hexahedral meshes, dM ec can be approximated using dM ec ¼ 1
2
½1
4
dMf2

þ 1
4
dMf1

�, where dMfi refers to the
change in the mass of cell face i when the cell face moves from its Lagrangian locations to its time n + 1 loca-
tions. See Fig. 9. In Fig. 9, the dashed lines are used to represent the Lagrangian xB locations and the solid
lines are used to represent the xn+1 locations. The quantities dMf1

and dMf2
are considered positive with

respect to (say node 1) if the net movement of their faces is in the direction of x2 � x1, where x2 is the location
of the other node forming the edge. For example, dMf1

< 0 and dMf2
> 0 for node 1 in Fig. 9.

Besides the mass associated with the fluxing, the velocity ue needs to be provided to complete the momen-
tum calculation. This velocity is representative of all non-degenerate momentum facets corresponding to an
edge and its mass displacement dMe. The PDC and QSOU schemes differ in how the ue in the mass flux
for an edge is approximated. For both schemes, choose node 1 to be the node such that dMe > 0 with respect
to its location. For partial donor cell differencing (PDC),
ue ¼
1

2
uB

2 ð1þ a0 þ b0C0Þ þ 1

2
uB

1 ð1� a0 � b0C0Þ; ð65Þ
where
C0 ¼ jdM ej
M e

; 0 6 ao þ boC 6 1: ð66Þ
For the quasi-second-order upwind (QSOU) differencing scheme, first find the vertex xnþ1
3 connected to xnþ1

2

whose angle with the vector xnþ1
1 � xnþ1

2 is largest,
xnþ1
3 ¼ min

xnþ1
v

xnþ1
1 � xnþ1

2

jxnþ1
1 � xnþ1

2 j
� xnþ1

v � xnþ1
2

jxnþ1
v � xnþ1

2 j

� �
: ð67Þ
Compute for each component (u) of velocity u,
du
ds
¼

signðuB
1 � uB

2 Þmin
juB

1
�uB

2
j

jxnþ1
1
�xnþ1

2
j ;

juB
2
�uB

3
j

jxnþ1
2
�xnþ1

3
j

� �
if ðuB

1 � uB
2 ÞðuB

2 � uB
3 Þ > 0;

0 if ðuB
1 � uB

2 ÞðuB
2 � uB

3 Þ < 0;

8<
: ð68Þ
where uB
3 refers to a component of velocity at node 3. Appendix D describes (at additional cost) how to im-

prove how du
ds is computed. One component of the edge velocity is then computed using
ue ¼ uB
2 þ

du
ds

� �
jxnþ1

2 � xnþ1
1 j

2
1� jdM ej

M e

����
����:
Then for both the partial donor cell differencing and QSOU, momentum is exchanged between the two vertices
using,
ðuMvÞnþ1
1 ¼ ðuMvÞB1 þ uedM e;

ðuMvÞnþ1
2 ¼ ðuMvÞB2 � uedM e:

ð69Þ
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5.3. Subcycling of fluxing schemes

The cell fluxing and momentum fluxing equations are subcycled. Specifically a smaller time step Dtc is used
in solving the equations in Sections 5.1 and 5.2 where
Dtc 6 fconDtn min
f

V c

dV f

����
���� and nDtc ¼ Dtn ð70Þ
n is an integer, fcon = 0.2 and the minimum is a minimum over all faces. The subcycled time step is chosen so
that the Courant stability condition (in 1D uDtc/Dx < 1 is satisfied). Equations in Sections 5.1 and 5.2 are
cycled through n times.

6. Summary of equations

KIVA-4 solves the equations in the order KIVA-3V solves them. Eq. (10) is first solved. Then (25), (35) and
(47) are solved in order and re-solved in the SIMPLE iteration. Once the pressure criteria is satisfied (48), the
turbulence equations (50) and (53) are solved. Vertices are subsequently moved to their time n + 1 locations.
The cell fluxing and momentum fluxing equations in Sections 5.1 and 5.2 are solved. Then temperature is com-
puted from the fluxed internal energy and pressure is computed from the ideal equation of state and a new
cycle is started. The localization of a particle in an unstructured grid and accuracy time step constraints
are discussed in Appendices E and F, respectively.

7. Results

To test KIVA-4’s new capabilities with unstructured meshing, various examples are presented in this sec-
tion beginning with the simple 1-D diffusion problem and ending with a full scale engine simulation. KIVA-4
uses a first-order discretization in time which means the temporal error scales as C(Dt). The spatial discreti-
zation ranges from first- to second-order (Error � (Dx)r, 1 6 r 6 2) depending on the grid used and the
smoothness of the fields to be fluxed. Specific results confirm these order of accuracy expectations. QSOU dif-
ferencing is used in all the calculations.

7.1. Diffusion

We test KIVA-4’s diffusion accuracy using a one-dimensional diffusion problem oY
ot ¼ o2Y

ox2 with boundary
conditions oY

oxj0 ¼ oY
oxj10 ¼ 0 on a 10 cm bar with initial mass fraction profile
Y ðx; t ¼ 0Þ ¼ 1

2
1þ cos

px
10

� �h i
ð71Þ
which evolves according to the analytical solution
Y ðx; tÞ ¼ 1

2
1þ cos

px
10

� �
exp

�p2t
100

� �� �
: ð72Þ
The error is computed with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx
X

c

ðY c � Y eÞ2
r

; ð73Þ
where Yc is the numerical mass fraction, Ye is the exact mass fraction, the sum
P

c is over all cells and Dx is the
cell dimension in centimeters. The error is evaluated at a time of t = 10 s. The left and right sides of Fig. 10
show the temporal and spatial convergence, respectively, for both hexahedral and tetrahedral grids.

The temporal convergence test was run with a cell size of .05 cm for hexahedra and a cell size of
6.25 · 10�3 cm for tetrahedra. Cell sizes were determined by finding the minimum cell edge length aligned with
the direction of diffusing mass. For example in Fig. 11, the bar length is 10 cm and the cell dimension is 1 cm.
These cell sizes were chosen to make the spatial error insignificant when compared to the temporal error. Thus
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Fig. 10. Temporal convergence (left) and spatial convergence (right) for 1D diffusion problem on a log–log plot.

Fig. 11. Edges of tetrahedral grid with cell size of 1 cm in the diffusion problem.
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while the left side of Fig. 10 has both spatial and temporal errors, the plot is mostly a reflection of the temporal
error. The spatial convergence test was run with a time step of 4.883 · 10�5 s for hexahedra and a time step of
3.125 · 10�3 s for tetrahedra. These time steps were chosen to make the temporal error insignificant when
compared to the spatial error. A larger time step can be used for tetrahedra because the spatial errors are lar-
ger for tetrahedra. The slope of the temporal convergence least-squares fit line is 0.96 for hexahedra and 0.98
for tetrahedra showing that the order of temporal convergence is 1. The slope of the spatial convergence least-
squares fit line is 1.97 for hexahedra and 1.0 for tetrahedra showing that the order of spatial convergence is 2
for hexahedra and 1 for tetrahedra. The cross-section of the tetrahedral grid is scaled as the number of cells
increase to maintain aspect ratios between tetrahedral edges.
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7.2. Cell fluxing

KIVA-4’s cell fluxing algorithm in Section 5.1 is tested by rotating a two-dimensional notched square and a
two-dimensional translated Gaussian distribution Y ¼ expð�1

2
ðx2 þ ðy � 1Þ2ÞÞ a full 360� in a disc. These initial

conditions are shown in Fig. 12. The dark and light regions are composed of two different species with the
same molecular weight. The velocity is prescribed to be a simple rotation. The radius of the circle is 5 cm.
Hexahedral, prism, tetrahedral and pyramidal grids are used. The hexahedral grids used are unstructured
O-grids. The results of the rotation for different mesh resolutions for the prism grids are shown in Figs. 13
and 14.

The two-dimensional computation (in the x–y plane) was performed with three-dimensional elements. All
cell edges in the hexahedral and prism meshes lie either in the x–y plane or purely in the z-direction. Cell edge
lengths that lie in the z-direction are equal to the disc thickness for hexahedral and prism meshes. In the tet-
rahedral and pyramidal grid, many cell edges contain non-zero components in all three coordinate directions.
Regardless of the mesh type, the cell dimension used in Figs. 15 and 16 was computed usingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðarea of circleÞ=ðnumber of cellsÞ

p
. The error is computed using
Fig. 12. Notched square (left) and translated Gaussian (right) used as initial conditions for cell-centered advection test.

Fig. 13. Rotated notched square with 1456 prism cells (left) and 6000 prism cells (right).



Fig. 14. Rotated notched square with 23,296 prism cells (left) and 88,000 prism cells (right).

Fig. 1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
c ðqmc

� qo
mc
ÞV c

� �2
� �r

P
cq

o
mc

V c

;

where qmc
is the species density of the dark material within a cell after the 360� rotation, qo

mc
is the initial species

density of the dark material,
P

c is a sum over all cells, and Vc is the volume of each cell. Computations were
run with a time step equivalent to a Courant number of approximately 1

5
. The spatial convergence results of the

rotation at different mesh resolutions are shown in Figs. 15 and 16. While there is some spread in the least
squares slope of the lines, the convergence appears to be 2nd order for the smooth Gaussian distribution
and 1st order for the discontinuous notched square.

7.3. Shock tube

We perform the shock tube problem whose analytical solution is described by Harlow and Amsden [9]. The
problem is performed in a 20 cm · .8 cm · .8 cm domain. Adiabatic boundaries conditions are imposed on the
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5. Spatial convergence test on a log–log plot for the notched square using hexahedra (slope = 1.46), prisms (slope = 1.42),
dra (slope = 1.24), and pyramids (slope = 1.28).



Cell dimension (cm)

E
rr

o
r

0.1 0.2 0.3 0.4 0.5

10-4

10-3

10-2

10-1

Hexahedra
Prisms
Tetrahedra
Pyramids

Fig. 16. Spatial convergence test on a log–log plot for the Gaussian distribution using hexahedra (slope = 2.60), prisms (slope = 2.15),
tetrahedra (slope = 1.81), and pyramids (slope = 1.75).

D.J. Torres, M.F. Trujillo / Journal of Computational Physics 219 (2006) 943–975 965
temperature. The initial density is .2 g/cm3 in 0 6 x 6 10 cm and 0.1 g/cm3 from 10 cm 6 x 6 20 cm. The ini-
tial pressure is 1.78 · 108 dyn/cm2 from 0 6 x 6 10 cm and 8.9 · 107 dyn/cm2 from 10 cm 6 x 6 20 cm. The
initial temperature is 428 K in the entire domain. Free-slip boundaries conditions are used. The time step used
was 4 · 10�7 s and the calculation ran for 450 cycles up to a time of 1.8 · 10�4 s. The initial ratio of specific
heats was 1.39. A shock and contact discontinuity propagate toward the right and a rarefaction wave prop-
agates toward the left. Note that while the problem is one-dimensional, calculations are performed in a three-
dimensional mesh. Portions of the grids are shown in Fig. 17. In the hexahedral mesh, all cells are oriented
advantageously to resolve the shock in contrast to the tetrahedral mesh where all cells could not be aligned
to resolve the shock. Analytical and numerical results are compared in Fig. 18. All densities are plotted versus
their x-coordinate, irrespective of their y- and z-coordinates. The hexahedral and tetrahedral meshes both use
8000 cells. The hexahedral mesh does a better job of resolving the discontinuities in density. The tetrahedral
mesh overshoots the analytical solution at about 17 cm and smooths out the discontinuities. The hexahedral
and tetrahedral calculation took 179 s on one processor of a Linux cluster using a Pentium IV XEON 2.2 GHz
processor.

7.4. Driven-cavity problem

Computations are performed in a 1 cm · 1 cm box. No-slip boundary conditions are imposed. At the top
boundary (y = 1 cm), the velocity in the x-direction is forced to move at 1 cm/s. Calculations were performed
at a Reynolds number of 1000 with a 40,000 cell prism mesh until a steady-state solution was obtained. The
left side of Fig. 19 shows contours of vorticity at a time of 36.25 s and the right side compares the steady-state
Fig. 17. Portion of hexahedral (left) and tetrahedral (right) meshes used in shock tube problem.
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velocity in the x-direction (u velocity) at x = .5 cm and the y-direction velocity (v velocity) at y = .5 cm with
the results of Ghia [8].

7.5. Compression test

A cylinder with a bore of 10 cm and a height of 10 cm is compressed adiabatically to a compression ratio of
40 and expanded back to its original state. The analytical solution and numerical error are shown in Fig. 20.
The numerical error is computed using 100jpc�pe j

pe
for hexahedral (6720 cells), prism (6720 cells) and tetrahedral

(6480 cells) grids. The term pc refers to the average computed pressure and pe refers to the exact analytical
Distance (cm)3 0
00000000T
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pressure. All grids (hexahedral, prism and tetrahedral) do an excellent job at matching the exact solution. The
exact pressure pe was calculated using
pe ¼ pi

V i

V

� �c

;

where Vi = 250p cm3 is the initial volume, V is the volume of the cylinder at a later time, pi = 1 · 106 dyn/cm2

is the initial pressure and c = 1.4 is the ratio of specific heats. The exact pressure is an accurate analytical solu-
tion since the sound speed is large compared to the piston speed. At the highest compression V i

V ¼ 40. During
compression and expansion, the z-coordinate (the coordinate parallel to the cylinder axis) of nodes is scaled so
nodes retain the same relative position between the piston crown and cylinder head. The gas used was nitro-
gen. Normally c is a function of temperature, but (for this simulation) the enthalpies of nitrogen in the numer-
ical solution were chosen so that c remained a constant regardless of temperature so an analytical comparison
could be made. The hexahedral mesh took 1381 s and the prism mesh took 1710 s. The tetrahedral mesh took
much longer (18,225 s) due to the highly distorted tetrahedra that are created when the cylinder volume is
compressed. All calculations were performed on the Pentium IV 2.2 GHz processor.

7.6. Gresho problem

We perform the Gresho problem to test our momentum fluxing algorithm. In the problem, an inviscid vor-
tex is allowed to spin in a two-dimensional 1 cm · 1 cm box. Free-slip boundary conditions are imposed. Since
it is expected that the numerics will incur some level of dissipation, the quality of the numerical method is
determined by how much of the initial kinetic energy is retained. The problem is initialized with a circumfer-
ential velocity
uh ¼
5r; 0 < r < 0:2;

2� 5r; 0:2 6 r < 0:4;

0; 0:4 6 r;

8><
>: ð74Þ
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where r is the radial distance. See Fig. 21 for the initial velocity vectors and velocity magnitude contours. The
calculation is run to a time of 3.0 s which is about 2.4 rotations. Fig. 22 shows a plot of the velocity vectors
and velocity magnitude in a 2000 cell tetrahedral grid at 3.0 s. The amount of kinetic energy retained as a func-
tion of the number of cells used in the mesh is plotted for hexahedral, prism, pyramidal, and tetrahedral
meshes in Fig. 23. The fraction of kinetic energy retained increases as one increases the mesh resolution.

However, there is a dramatic increase in kinetic energy dissipation when transitioning from hexahedral
meshes to prism, pyramidal and tetrahedral meshes. This dissipation is due to the KIVA-4 staggering of vari-
ables as described in Section 3. Velocity is not co-located at cell-centers with all other field variables (density,
pressure, temperature). This staggering makes the Gresho problem stiff for meshes with degenerate elements
and leads to increased dissipation. A solution is to co-locate all variables, either at cell-centers or at nodes. For
example, O’Rourke and Sahota [13] perform the same problem and report a retention of .74 with a hexahedral
grid (400 cells) and .63 with a tetrahedral grid (2400 cells) with a co-located nodal scheme. These values are
also plotted on Fig. 23.

7.7. 3D engine with vertical valves

We simulate a 3D engine with vertical valves. While no analytical solution exists, we can compare with
KIVA-3V. All features of a full engine calculation (without combustion) are included: spray, wall film, valve
and piston movement. In addition, a procedure known as snapping is used in the calculation. Snapping
involves removing or adding layers of cells when the piston is moving up and down. Snapping also exchanges
which layers of cells serve as the solid valve surfaces. One should note the improved geometry around the port
and cylinder perimeters in the unstructured hexahedral grid in Fig. 24 compared to the structured hexahedral
grid which has four nearly triangular cells around each of its ports and cylinder. The lower left runner is a
pressure inflow boundary whose outermost face is held at 2 bars. The concentrations of the species that enter
Fig. 21. Initial plot of velocity vectors and velocity magnitude for the Gresho problem.



Fig. 22. Plot of velocity vectors and velocity magnitude for the Gresho problem at 3.0 s using a 2000 cell tetrahedral grid.
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the inflow boundary are 11% iso-octane, 19% oxygen and 70% nitrogen by mass. The ambient density is com-
puted using qambient ¼

pambientW avg

RoT ambient
where pambient ¼ 1� 106 dyn

cm2, Tambient = 300 K and Ro ¼ 8:3143� 107 erg
mole K

. The
ambient density is then isentropically compressed to a density at the inflow boundary using



Fig. 24
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Fig. 25
compu
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qinflow ¼ qambient

pcell

pambient

� �1
c

;

where pcell is the pressure of the cell bordering the pressure inflow boundary. An inflow temperature is also
computed at the pressure inflow boundary using T inflow ¼ pcellW avg

qinflowR . Values of turbulent kinetic energy and length
scale are specified to be 100 cm2

s2 and 1 cm, respectively, at the pressure inflow boundary. The upper right runner
is a pressure outflow boundary whose outermost face is held at 1 bar. The left runner and vertical port are
initially filled with a fuel (11% iso-octane, 19% oxygen and 70% nitrogen by mass) held initially at 1 bar
and 300 K. The cylinder (bore = 14 cm), right runner and right port are initially filled with mostly air (1%
. Fuel contours in a structured grid (left) computed with KIVA-3V and fuel contours in an unstructured grid (right) computed with
-4.

. Cross-sectional fuel contours in structured grid (left) computed with KIVA-3V and fuel contours in unstructured grid (right)
ted with KIVA-4.
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iso-octane, 29% oxygen and 70% nitrogen by mass) at 300 K and 1 bar. The engine speed is 1000 RPM. 2000
iso-octane fuel spray particles (whose radii are 37.9 lm and total mass is 14.4 mg) are injected at 0 crank angle
degrees (CAD) for 10 CAD with a 74� hollow cone angle. In our CAD convention, 0 CAD corresponds to the
highest point of the piston and 180 CAD corresponds to the lowest point of the piston. The structured grid has
18,080 cells and 21,021 nodes. The unstructured hexahedral grid has 16,000 cells and 18,349 nodes. The cal-
culation is run from 0 CAD to 180 CAD. KIVA-3V required 1090 s and 1038 cycles to perform the calculation
on the structured grid. KIVA-4 required 1362 s and 1009 cycles to perform the calculation on the structured
grid. Thus KIVA-4 is 25% slower than KIVA-3V in the structured 3D engine calculation. Much of the reduced
computational efficiency (20%) is due to the fact that KIVA-4 uses Fortran 90 modules and dynamic memory
allocation. The unstructured engine calculation required 1069 s to run using KIVA-4. The unstructured cal-
culation also benefits from the improved geometry of its mesh by eliminating the near triangular cells on
the perimeter of its cylinder and ports.

Figs. 24 and 25 show the fuel contours from these calculations at 180 CAD. The fuel distribution compares
reasonably well in both simulations despite some differences in the fuel contours.

8. Conclusion

In this new version of KIVA, the solution of the transport equations coupled with sprays and chemical
reactions has been implemented in an unstructured grid framework capable of handling hexahedra, prisms,
tetrahedra, and pyramids. This required modifications to the Lagrangian stage of the calculations for all geo-
metrical dependent quantities. Fundamental changes were implemented in the new rezoning scheme, particu-
larly in the momentum fluxing and the pressure solution. The code has been successfully tested with various
examples ranging from a 1-D diffusion problems to full scale engine computations with moving boundaries.
The unstructured capability of this code allows for easier and more flexible grid construction which would
directly benefit applications in complex geometries.
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Appendix A. Mass

Start with
D

Dt

Z
V

qm dV ¼
Z

S
qDr qm

q

� �� �
dA:
Approximate the time derivative and set the control volume to be a cell volume which moves with the fluid
velocity,
ðqmÞ
BV B � ðqmÞ

AV A

Dt
¼

X
f¼cell faces

qDr qm

q

� �� �
f

� Af :
Use the definition of mass fraction Ym = qm/q.
ðY mÞBMB � ðY mÞAMA

Dt
¼
X

f

ðqDrY mÞf � Af :
Choose a semi-implicit formulation and use MB = MA since mass within a cell does not change due to
diffusion
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MB Y B
m � Y A

m

Dt

� �
¼
X

f

ðqDÞnr½/DY B
m þ ð1� /DÞY A

m �
� �

f
� An

f : ðA:1Þ
Eq. (A.1) is approximated in the form
MB Y B
m � Y A

m

� 	
� Dt

Sct

X
f

ðln
t ÞfðrY A

mÞf � A
n
f þ

X
f

ðln
t Þfr½/DðY B

m � Y A
mÞ�f � A

n
f

" #
¼ 0; ðA:2Þ
where Sct is the turbulent Schmidt number Sct ¼ lt

qD. The equation is solved using a conjugate residual algo-
rithm where the residual is the left side of Eq. (A.2).

Appendix B. dAf/dt

To compute the term dAf

dt , let us refer first to Fig. 26. For a planar quadrilateral, one can compute the area of
the face using
Af ¼
1

4
ðx1 þ x2Þ � ðx3 þ x4Þ½ � � ðx2 þ x3Þ � ðx1 þ x4Þ½ �:
Differentiating,
dAf

dt
¼ 1

4

dx1

dt
þ dx2

dt

� �
� dx3

dt
þ dx4

dt

� �� �
� ðx2 þ x3Þ � ðx1 þ x4Þ½ � þ 1

4
ðx1 þ x2Þ � ðx3 þ x4Þ½ �

� dx2

dt
þ dx3

dt

� �
� dx1

dt
þ dx4

dt

� �� �
:

and substituting velocities un
i for the temporal derivatives of the vertex locations dxi

dt yields,
dAf

dt
¼ 1

4
un

1 þ un
2

� 	
� un

3 þ un
4

� 	� �
� ðx2 þ x3Þ � ðx1 þ x4Þ½ � þ 1

4
ðx1 þ x2Þ � ðx3 þ x4Þ½ �

� un
2 þ un

3

� 	
� un

1 þ un
4

� 	� �
:

Appendix C. Pressure

Here we derive (45). Solve (34) for TB and substitute the result in (35),
V B

MB

pp
�R
¼ T t þ pp þ pn

2ct
v

V n

MB
þ Dt

MBct
v

1

Prt

X
f

ðcpltÞfrð/DT B þ ð1� /DÞ~T Þf � A
n
f

"(

þð1� AoÞð/DrðuBÞ : ruB þ ð1� /DÞrðuAÞ : ruAÞV B

#),
1þ pp þ pn

2ct
vpp

�R
 �

: ðC:1Þ
1

2
3

4

Fig. 26. Nodes on a face.
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Neglecting diffusion and dissipation terms, (C.1) can be rearranged in the form
ppV B 1

MB�R
þ 1

2MBct
v

� �
þ pnV B

2MBct
v

¼ T t þ pp þ pn

2ct
v

V n

MB
: ðC:2Þ
Differentiating (C.2) with respect to o
opp yields
pp oV B

opp
þ V B

� �
1

MB �R
þ 1

2MBct
v

� �
þ pn

2MBct
v

oV B

opp
¼ V n

2ct
vMB

ðC:3Þ
which can be rewritten in the form of Eq. (45).

Appendix D. Potential improvements

One can improve the computation of the derivative in (60) (at additional cost) by using three cells and solv-
ing a 3 · 3 linear system of equations. Find three cells (with cell centers xci ) whose angle with xf � xcn is largest
xci ¼ min
xcj

xf � xcn

jxf � xcn j
�

xcj � xcn

jxcj � xcn j

� �
: ðD:1Þ
Then solve the 3 · 3 linear system for the coefficients of the vector ecn
ðxc1
� xcnÞ � ecn ¼ ðqqÞc1

� ðqqÞcn
;

ðxc2
� xcnÞ � ecn ¼ ðqqÞc2

� ðqqÞcn
;

ðxc3
� xcnÞ � ecn ¼ ðqqÞc3

� ðqqÞcn
;

ðD:2Þ
where ðqqÞci
refers to the cell-centered quantity (qq) whose cell center is xci . Replace the term
ðqqÞcn
� ðqqÞcnn

jxcn � xcnn j
in (60) with
xf � xcn

jxf � xcn j
� ecn :
Similarly one can improve the computation of (68). Find three vertices (with locations ~xi) whose angle with
x1 � x2 is largest
~xi ¼ min
xv

x1 � x2

jx1 � x2j
� xv � x2

jxv � x2j

� �
: ðD:3Þ
Then solve the 3 · 3 linear system for the coefficients of the vector eu
ð~x1 � x2Þ � eu ¼ ~u1 � u2;

ð~x2 � x2Þ � eu ¼ ~u2 � u2;

ð~x3 � x2Þ � eu ¼ ~u3 � u2;

ðD:4Þ
where ~ui is a component of the velocity at locations ~xi. Replace the term
u2 � u3

jx2 � x3j

in (68) with
x2 � x3

jx2 � x3j
� eu:



Fig. 27. Pyramidal volume generated with a particle and a face of a cell.
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Appendix E. Time step constraints

While KIVA-4 does not have any stability constraints since the diffusion terms are differenced implicitly
and the advection fluxing is subcycled, the time step is still limited based on accuracy considerations. The first
time constraint limits the product of the acceleration and the time step squared by the cell size Dxcell,
Dtcell ¼
faccDxcell

max
nodes of cell

juB � unj
where facc = 0.5. A time step Dtacc constraint for the entire mesh is computed by taking the minimum of Dtcell

for all cells in the mesh.
The second time constraint limits the amount of cell distortion that occurs in the Lagrangian stage.
Dtrst ¼ min
c

frst

2
ffiffiffiffiffiffiffi
e=3

p
þ j~pj=3

;

where
e ¼ 1

3
ð~p2 � 3qÞ; ~p ¼ �smm
and
q ¼ s11s22 þ s11s33 þ s22s33 � s2
23 � s2

13 � s2
12;
where frst = 0.6, S is the rate of strain tensor and slm are its entries,
S ¼ 1

2
ðruþ ðruÞTÞ:
The time step is also limited in its growth rate Dtgr = 1.02 Dtn, by a user defined maximum time step Dtmx and a
user defined time step based on maximum crank angle Dtmxca. There are also time step constraints due to
chemistry Dtcm and evaporation Dtsp. The final time step Dtn+1 for the next cycle is computed by taking the
minimum of all of the above time steps,
Dtnþ1 ¼ minðDtacc;Dtrst;Dtcm;Dtsp;Dtgr;Dtmx;DtmxcaÞ:
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Appendix F. Finding a particle in an unstructured grid

Moving from a structured grid to an unstructured grid in regards to particles does not require any signif-
icant modifications to the algorithm used to find particles. In KIVA-3V, a particle is inside a cell or on a cell
boundary if all the face-particle pyramidal volumes are non-negative for all six faces of the cell. Fig. 27 shows
the pyramidal volume generated with a particle and a cell face. The vertices of this face-particle pyramidal
volume are the particle vertex and the cell face vertices. The volume of the pyramid is found by decomposing
it into two tetrahedra.

For unstructured meshes, faces can be triangular or degenerate (have zero area). If the face is triangular, the
face-particle volume will be a tetrahedron. However, the algorithm for finding the pyramidal volume still
applies. If the face is degenerate, the face-particle volume will be zero. However if the remainder of the
face-particle volumes are likewise non-negative, the particle still lies inside the cell. Thus the criteria (if all
six face-particle volumes are nonnegative, the particle lies in the element) generalizes to unstructured meshes.
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